Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 May 4;757(1):47-58.
doi: 10.1016/0304-4165(83)90151-4.

Breakdown of cartilage proteoglycan in a tissue culture model of rheumatoid arthritis

Breakdown of cartilage proteoglycan in a tissue culture model of rheumatoid arthritis

J J Steinberg et al. Biochim Biophys Acta. .

Abstract

Proteoglycan breakdown was studied in a coculture model which mimics the confrontation between synovium and cartilage that occurs in rheumatoid arthritis. Bovine nasal-septum cartilage discs radioactively labeled (35SO2-4 with or without [3H]glucosamine) and 'chased' in non-radioactive medium were cultured in contact with minced rheumatoid synovial membranes for intervals up to 8 days. Synovium-stimulated (2-3-fold) cartilage breakdown was unaffected by ascorbate supplementation. Labeled products (small molecules plus proteoglycan complexes) in culture media were characterized by chromatographic, sedimentation and enzymic digestion methods. Breakdown was dominated by the release of a range of proteoglycan products, fully disaggregated and incapable of reaggregation with added hyaluronate. Because constituent glycosaminoglycans were of uniform size, proteoglycan polydispersity was attributed to differences in core protein length. Hydrocortisone inhibited degradation and partially prevented the shift of proteoglycans to lower average molecular weight. An additional breakdown pattern occasionally noted during the initial 48 h of coculture was characterized by release of a subpopulation of low charge-density proteoglycan bearing shortened glycosaminoglycan chains, consistent with glycosidase action. We conclude that rheumatoid synovia exhibit two distinct cartilage degradative potencies in vitro that may be important in vivo: (a) A variable hyaluronidase-like activity at early culture times, and (b) a dominant proteolytic activity generating an array of disaggregated proteoglycan products that differ largely on the basis of their core lengths. The response to hydrocortisone is consistent with inhibition of proteolysis through the stabilization of cellular membranes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources