Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Mar;103(3):557-79.
doi: 10.1093/genetics/103.3.557.

Models of evolution of reproductive isolation

Models of evolution of reproductive isolation

M Nei et al. Genetics. 1983 Mar.

Abstract

Mathematical models are presented for the evolution of postmating and premating reproductive isolation. In the case of postmating isolation it is assumed that hybrid sterility or inviability is caused by incompatibility of alleles at one or two loci, and evolution of reproductive isolation occurs by random fixation of different incompatibility alleles in different populations. Mutations are assumed to occur following either the stepwise mutation model or the infinite-allele model. Computer simulations by using Itô's stochastic differential equations have shown that in the model used the reproductive isolation mechanism evolves faster in small populations than in large populations when the mutation rate remains the same. In populations of a given size it evolves faster when the number of loci involved is large than when this is small. In general, however, evolution of isolation mechanisms is a very slow process, and it would take thousands to millions of generations if the mutation rate is of the order of 10(-5) per generation. Since gene substitution occurs as a stochastic process, the time required for the establishment of reproductive isolation has a large variance. Although the average time of evolution of isolation mechanisms is very long, substitution of incompatibility genes in a population occurs rather quickly once it starts. The intrapopulational fertility or viability is always very high. In the model of premating isolation it is assumed that mating preference or compatibility is determined by male- and female-limited characters, each of which is controlled by a single locus with multiple alleles, and mating occurs only when the male and female characters are compatible with each other. Computer simulations have shown that the dynamics of evolution of premating isolation mechanism is very similar to that of postmating isolation mechanism, and the mean and variance of the time required for establishment of premating isolation are very large. Theoretical predictions obtained from the present study about the speed of evolution of reproductive isolation are consistent with empirical data available from vertebrate organisms.

PubMed Disclaimer

References

    1. Genetics. 1980 Apr;94(4):1011-38 - PubMed
    1. Genetics. 1981 Mar-Apr;97(3-4):703-18 - PubMed
    1. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2843-7 - PubMed
    1. Genetics. 1977 Feb;85(2):331-7 - PubMed
    1. Genetics. 1964 Apr;49:725-38 - PubMed

Publication types