Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Feb;129(2):439-45.
doi: 10.1099/00221287-129-2-439.

The influence of ionic strength, pH and a protein layer on the interaction between Streptococcus mutans and glass surfaces

The influence of ionic strength, pH and a protein layer on the interaction between Streptococcus mutans and glass surfaces

A Abbott et al. J Gen Microbiol. 1983 Feb.

Abstract

The initial interaction between Streptococcus mutans and hard surfaces has been investigated using a rotating disc technique. The deposition to clean and BSA-coated glass of two strains of S. mutans, FA-1 (serotype b) and KPSK2 (serotype c), which exhibit different surface properties, was studied. Organisms were harvested from cultures grown in a chemostat at a dilution rate of 0.06 h-1 and suspended in NaCl solutions of defined ionic strengths and pH values. The deposition of both strains showed a strong dependence on electrolyte concentration, particularly at low ionic strengths, which was inversely related to the zeta potentials of the organisms. Similarly, the ionic strength at which maximum deposition was first noted (critical coagulation concentration) for the two strains correlated with their relative potentials. Deposition was insensitive to changes in pH at an electrolyte concentration of 0.05 M. The maximum observed deposition did not approach values predicted by theory, suggesting that a further barrier to deposition, other than electrostatic repulsion, might exist. Under all experimental conditions, some of the deposited bacteria were observed to be oscillating, suggesting that they were held at a distance from the collector surface. The cells did not, however, appear to be deposited in a secondary minimum predicted by DLVO theory hence it may be that long-range polymer interactions are also involved in the deposition of these organisms.

PubMed Disclaimer