Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jan;244(1):C11-6.
doi: 10.1152/ajpcell.1983.244.1.C11.

Effects of changes in serosal chloride on electrical properties of toad urinary bladder

Effects of changes in serosal chloride on electrical properties of toad urinary bladder

J Narvarte et al. Am J Physiol. 1983 Jan.

Abstract

Conventional microelectrode and tracer flux techniques were used to study the effects of reduction in serosal chloride concentration ([Cl]s) on the electrical properties of toad urinary bladder epithelium. Reduction in [Cl]s resulted in a transient change in transepithelial potential (Vms) (and of apical and basolateral membrane potentials) that was inversely dependent on the base-line values of those potentials. In all cases, however, there was a decrease in transepithelial resistance (Rt) that was explained by an increase in the sodium conductance of the apical membrane. In tissues in which the transepithelial potential increased, there was a rise in the active mucosal-to-serosal sodium flux. The increase in conductance was directly related to the increase in short-circuit current. The changes in Vms and Rt brought about by reduction in [Cl]s were prevented by agents known to modify sodium transport, including low mucosal sodium concentration, addition of amiloride or amphotericin B to the mucosal solution, or of ouabain to the serosal solution. The results are best explained by a primary effect of chloride reduction on sodium extrusion across the basolateral membrane, with a secondary increase in apical sodium conductance. In addition, the data provide new evidence for the existence of a basolateral chloride conductance pathway.

PubMed Disclaimer

Publication types