Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jul;43(7):3362-7.

Regional measurements of blood flow in experimental RG-2 rat gliomas

  • PMID: 6850640

Regional measurements of blood flow in experimental RG-2 rat gliomas

D R Groothuis et al. Cancer Res. 1983 Jul.

Abstract

Regional measurements of blood flow (F) were performed in transplanted intracerebral RG-2 rat gliomas using [14C]iodoantipyrine, Kety-Schmidt blood flow equations, and quantitative autoradiography. Twenty-nine intracranial tumors in ten rats were analyzed by location; 18 intraparenchymal, seven meningeal, two third-ventricular, and two fourth-ventricular tumors were studied. For all tumors, averaged mean F was 91 +/- 33 (S.D.) ml/hg/min. In all but one tumor, mean F was intermediate between normal cortex and corpus callosum values. There was moderate regional variation: averaged mean F was lower in tumor center (78 +/- 47 ml/hg/min) than in tumor periphery (93 +/- 30 ml/hg/min). Within individual tumors, F showed moderate variation which correlated to some extent with histological features; a regional F of less than 10 ml/hg/min was observed in only one tumor within an area of necrosis. F in regions of brain immediately surrounding the tumor was higher than in tumor periphery. Blood flow to RG-2 tumors seems unlikely to limit drug delivery any more than to normal brain, and the consistent levels from tumor to tumor and within individual tumors make the RG-2 model an excellent one with which to study drug delivery in experimental brain tumors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources