Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 May;54(5):1188-94.
doi: 10.1152/jappl.1983.54.5.1188.

Barometric pressures at extreme altitudes on Mt. Everest: physiological significance

Barometric pressures at extreme altitudes on Mt. Everest: physiological significance

J B West et al. J Appl Physiol Respir Environ Exerc Physiol. 1983 May.

Abstract

Barometric pressures were measured on Mt. Everest from altitudes of 5,400 (base camp) to 8,848 m (summit) during the American Medical Research Expedition to Everest. Measurements at 5,400 m were made with a mercury barometer, and above this most of the pressures were obtained with an accurate crystal-sensor barometer. The mean daily pressures were 400.4 +/- 2.7 (SD) Torr (n = 35) at 5,400 m, 351.0 +/- 1.0 Torr (n = 16) at 6,300 m, 283.6 +/- 1.5 Torr (n = 6) at 8,050 m, and 253.0 Torr (n = 1) at 8,848 m. All these pressures are considerably higher than those predicted from the ICAO Standard Atmosphere. The chief reason is that pressures at altitudes between 2 and 16 km are latitude dependent, being higher near the equator because of the large mass of cold air in the stratosphere of that region. Data from weather balloons show that the pressure at the altitude of the summit of Mt. Everest varies considerably with season, being about 11.5 Torr higher in midsummer than in midwinter. Although the mountain has been climbed without supplementary O2, the very low O2 partial pressure at the summit means that it is at the limit of man's tolerance, and even day-by-day variations in barometric pressure apparently affect maximal O2 uptake.

PubMed Disclaimer

Publication types