Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jul 10;258(13):8156-62.

Mechanism of the glycine cleavage reaction. Steady state kinetic studies of the P-protein-catalyzed reaction

  • PMID: 6863283
Free article

Mechanism of the glycine cleavage reaction. Steady state kinetic studies of the P-protein-catalyzed reaction

K Fujiwara et al. J Biol Chem. .
Free article

Abstract

Chicken liver P-protein of the multienzyme glycine cleavage system catalyzes the first partial reaction of glycine cleavage. In the partial reaction, glycine and H-protein serve as substrates and the products are CO2 (not bicarbonate) and the decarboxylated portion of glycine attached to H-protein. The reaction exhibited Michaelis-Menten kinetics with respect to both substrates. The optimum pH for the reaction is 7.1, with 6.5 for the reverse reaction. Km values for glycine and H-protein are independent of the concentration of the the co-substrate, and calculated values are 5.8 mM for glycine and 3.4 microM for H-protein. Initial velocity experiments gave intersecting double reciprocal plots that conform to a sequential mechanism. Product inhibition studies revealed that both products inhibited competitively with respect to the varied substrate. Glycine methyl ester was found to be a competitive inhibitor of glycine and noncompetitive inhibitor of H-protein. H-protein whose lipoic acid prosthetic group and cysteinyl residues were modified with N-ethylmaleimide was a noncompetitive inhibitor of glycine and a competitive inhibitor of H-protein. These results are most consistent with a sequential random Bi Bi mechanism in which no abortive dead end complex is formed. This was supported by an isotope exchange experiment.

PubMed Disclaimer

Substances

LinkOut - more resources