Organization of rDNA spacer fragment variants among human acrocentric chromosomes in somatic cell hybrids
- PMID: 6875425
Organization of rDNA spacer fragment variants among human acrocentric chromosomes in somatic cell hybrids
Abstract
Although the human rDNA gene family is organized in clusters of tandem repeats on five pairs of acrocentric chromosomes, all rDNA genes have undergone a "concerted" evolution resulting in a homogeneous population of genes. Two steps are necessary for a variant to spread to all rDNA genes: dissemination of the variant to all genes in a cluster; and exchange of rDNA genes between nonhomologous chromosomes. To study the organization of rDNA genes, a restriction fragment length polymorphism in the spacer region adjacent to the 28S gene was examined in somatic cell hybrids in which individual human acrocentric chromosomes could be isolated. Human DNA cut with BamHI and analyzed by Southern hybridization yields two to four major bands that hybridize to a 32P-labeled cloned fragment of the 28S gene. Hybrids containing single human acrocentric chromosomes do not recapitulate the parental patterns, but frequently have only one of the parental bands. The data suggest that the quantitative distribution of spacer length variants differs among the human acrocentric chromosomes in hybrids. The frequently observed homogeneity of the rDNA variants on individual acrocentric chromosomes in hybrid cells may reflect the individual rDNA clusters in the parental cell or may be a result of unequal crossing over in the hybrid cell.
Similar articles
-
Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes.Genomics. 2001 May 1;73(3):255-63. doi: 10.1006/geno.2001.6540. Genomics. 2001. PMID: 11350117
-
Selective suppression of the transcription of ribosomal genes in mouse-human hybrid cells.J Cell Physiol. 1979 Mar;98(3):553-9. doi: 10.1002/jcp.1040980313. J Cell Physiol. 1979. PMID: 438299
-
Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats.Gene. 2005 Jan 3;344:105-13. doi: 10.1016/j.gene.2004.09.001. Gene. 2005. PMID: 15656977
-
[Restriction fragment length polymorphism of the 5'-region of the bovine ribosomal spacer repeat].Mol Biol (Mosk). 1992 Mar-Apr;26(2):354-68. Mol Biol (Mosk). 1992. PMID: 1364086 Russian.
-
Genetic analysis of human malignancy using somatic cell hybrids and monochromosome transfer.Cancer Surv. 1988;7(2):317-24. Cancer Surv. 1988. PMID: 3066478 Review.
Cited by
-
The ribosomal RNA genes of three salmonid species.Biochem Genet. 1985 Dec;23(11-12):997-1010. doi: 10.1007/BF00499943. Biochem Genet. 1985. PMID: 4084210
-
Organization of the ribosomal RNA genes of Schizophyllum commune.Curr Genet. 1988 May;13(5):417-24. doi: 10.1007/BF00365663. Curr Genet. 1988. PMID: 2841031
-
Human ribosomal RNA gene arrays display a broad range of palindromic structures.Genome Res. 2005 Aug;15(8):1079-85. doi: 10.1101/gr.3970105. Epub 2005 Jul 15. Genome Res. 2005. PMID: 16024823 Free PMC article.
-
Linkage disequilibrium in human ribosomal genes: implications for multigene family evolution.Genetics. 1988 Aug;119(4):943-9. doi: 10.1093/genetics/119.4.943. Genetics. 1988. PMID: 2900795 Free PMC article.
-
Preferential homogenization between adjacent and alternate subrepeats in wheat rDNA.Nucleic Acids Res. 1986 Jul 11;14(13):5499-512. doi: 10.1093/nar/14.13.5499. Nucleic Acids Res. 1986. PMID: 3737408 Free PMC article.