Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Apr:337:351-71.
doi: 10.1113/jphysiol.1983.sp014628.

Hormone-sensitive magnesium transport in murine S49 lymphoma cells: characterization and specificity for magnesium

Hormone-sensitive magnesium transport in murine S49 lymphoma cells: characterization and specificity for magnesium

J J Erdos et al. J Physiol. 1983 Apr.

Abstract

1. The hormone-sensitive transport of Mg(2+) into murine S49 lymphoma cells and its relationship to other divalent cation transport systems have been investigated.2. Mg(2+) influx, measured with (28)Mg(2+), is saturable with an apparent extracellular ion concentration at half-maximal influx (K(in)) for Mg(2+) of 330 muM and a maximal influx rate of 360 p-mole/min.10(7) cells (2.9 n-mole/min.mg cell protein or a flux rate of about 0.12 p-mole/sec.cm(2)). Efflux of Mg(2+) is biphasic with half-times of 55 and 240 min at 37 degrees C and is temperature-sensitive.3. beta-Adrenergic agonists inhibit influx but not efflux of Mg(2+) in S49 cells. Efflux of Mg(2+) is also unaffected by extracellular [Mg(2+)] or [Ca(2+)]. These results imply that the mechanism of the transport system does not involve Mg-Mg exchange.4. Mn(2+) is a non-competitive inhibitor of Mg(2+) influx with an inhibition constant, K(i), of about 200 muM. The weak inhibition exhibited by Ca(2+) (K(i) > 5 mM) is also non-competitive. La(3+) inhibits Mg(2+) transport half-maximally at about 100 muM; Ni(2+), Zn(2+), Co(2+) and Sc(3+) are all less effective than La(3+). The Ca(2+)-channel blockers cis-diltiazem, verapamil, and nifedipine and the monovalent cations Na(+) and K(+) also have no effect on Mg(2+) influx. However, increasing the extracellular pH stimulates Mg(2+) influx.5. Total cellular Mg(2+) is about 85 n-mole/10(7) cells; however, at apparent isotopic equilibrium with (28)Mg(2+) less than 3% of total cellular Mg(2+) has been exchanged. This indicates that cellular Mg(2+) is highly compartmented and that recently transported Mg(2+) exchanges very slowly with bulk intracellular Mg(2+).6. Ca(2+) influx has a K(in) of 80 muM and is much slower than Mg(2+) influx. V(max) varied in different experiments from 3 to 15 p-mole/min.10(7) cells (25-125 p-mole/min.mg cell protein). Efflux of Ca(2+) is biphasic with half-times of 22 and 200 min and is temperature-sensitive. Hormonal stimulation has no effect on either influx or efflux of Ca(2+). Mg(2+) is a competitive inhibitor of Ca(2+) influx (K(i) = 3 mM).7. Two kinetic components of Mn(2+) influx are present with apparent K(in)s of 4 muM and 100 muM. Maximal influx rates are 5 and 60 p-mole/min.10(7) cells (40 and 480 p-mole/min.mg cell protein), respectively. Influx of Mn(2+) is not altered by beta-adrenergic agonist.8. Uptake of Na(+) or K(+) is unaltered by beta-adrenergic stimulation. These data in the S49 lymphoma cell indicate that (a) Mg(2+) is translocated by a transport system independent of those that transport other divalent cations, (b) hormonal inhibition of divalent ion transport is specific for Mg(2+) and (c) cellular Mg(2+) is highly compartmented.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Exp Cell Res. 1970 Apr;60(1):61-77 - PubMed
    1. Biochim Biophys Acta. 1971 Jan 5;225(1):71-6 - PubMed
    1. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1330-7 - PubMed
    1. J Physiol. 1972 Jul;224(1):121-39 - PubMed
    1. J Physiol. 1972 Dec;227(3):855-74 - PubMed

Publication types

LinkOut - more resources