Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Aug 17;511(3):470-86.
doi: 10.1016/0005-2736(78)90282-1.

Sugar uptake into brush border vesicles from dog kidney. II. Kinetics

Sugar uptake into brush border vesicles from dog kidney. II. Kinetics

R J Turner et al. Biochim Biophys Acta. .

Abstract

The kinetics of D-glucose transport over the concentration range 0.07--20 mM have been investigated in a vesiculated membrane preparation from dog kidney cortex. 1. A sodium-dependent and a sodium-independent component of D-glucose uptake are observed. The sodium-dependent component is phlorizin sensitive (KI approximately 0.6 micron) and electrogenic. 2. The sodium-dependent component of D-glucose uptake yields non-linear Eadie-Hofstee plots consistent with the presence of high (GH) and low (GL) affinity sites (KH approximately 0.2 mM, KL approximately 4.5 mM, VL/VH approximately 7 at pH 7.4, 25 degrees C, 100 mM NaC1 gradient). Alternative explanations are cooperative effects of non-Michaelis-Menten kinetics. 3. The initial uptake of D-glucose increases as the intravesicular membrane potential become more negative but the numerical values of KH and KL show little, if any, change. 4. alpha-Methyl-D-glucoside transport is also sodium dependent and phlorizin sensitive (KI approximately 1.9 micron). 5. In contrast to the results for D-glucose, the sodium-dependent component of alpha-methyl-D-glucoside uptake exhibits a nearly linear Eadie-Hofstee plot consistent with a single carrier site with Km approximately 1.9 mM and Vmax approximately 27 nmol/min per mg protein at pH 7.4, 25 degrees C, 100 mM NaCl gradient. 6. The kinetics of D-glucose transport in newborn dog kidney are similar to those in the adult except that the low affinity (GL) system appears to be less well developed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources