Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun;93(3):775-87.
doi: 10.1083/jcb.93.3.775.

Ultrastructure of clots during isometric contraction

Ultrastructure of clots during isometric contraction

I Cohen et al. J Cell Biol. 1982 Jun.

Abstract

We explored the retraction or contraction of platelet-fibrin clots under isometric conditions. In the presence of micromolar calcium clots of normal platelet-rich plasma developed tension at an initial rate of 0.1 to 0.2 g/min per cm2 (initial cross-sectional area). Electron microscopy of clots fixed after attaining a force of 1.6 g/cm2 revealed platelets with elongated bodies and pseudopods in close apposition to fibrin strands which were oriented in cablelike fashion in the direction of tension. The development of tension could not be explained simply on the basis of platelet-platelet association and interaction alone. First, factor XIII-dependent cross-linking of fibrin fibers was critical to normal isometric contraction. Second, tension decreased linearly, rather than exponentially, when the platelet count in the platelet-fibrin clot was decreased, suggesting that platelets must be interacting with another component (i.e. fibrin). Thrombasthenic platelets, deficient in fibrinogen receptors, failed to develop tension or to align fibrin strands or pseudopods in the clot. Platelet-fibrin clots treated with vincristine to disassemble microtubules or cytochalasin B to disrupt microfilaments failed to develop tension and relaxed if these agents were added after tension had developed. Relaxation under these conditions, however, was not associated with loss of orientation of fibrin strands. Our findings suggest that platelet-fibrin interaction in clots under isometric conditions leads to orientation of fibrin strands and platelets in the direction of force generation. Tension develops as platelets simultaneously attach to and spread along fibrin strands, and contract. The contraction draws some fibrin into platelet-fibrin clumps and aligns other strands in the long axis of tension. The achievement and maintenance of maximum tension appears to depend on the development of platelet-fibrin attachments and extension of platelet bodies and long pseudopods containing bundles of microfilaments and microtubules along the oriented fibrin fibers.

PubMed Disclaimer

References

    1. Blood. 1968 May;31(5):604-22 - PubMed
    1. Blood. 1965 Feb;25:241-57 - PubMed
    1. Thromb Diath Haemorrh. 1968 Jul 31;19(3):309-15 - PubMed
    1. Biochim Biophys Acta. 1969 Feb 25;172(2):266-76 - PubMed
    1. J Physiol. 1971 Apr;214(1):145-58 - PubMed

Publication types