Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Mar;67(3):868-74.
doi: 10.1121/1.383966.

Differential electrical excitation of the auditory nerve

Differential electrical excitation of the auditory nerve

R C Black et al. J Acoust Soc Am. 1980 Mar.

Abstract

The multichannel cochlear prosthesis requires an electrode stimulus configuration which produces a stimulus field spatially localized to each electrode. In this paper, a three-dimensional discrete resistance model of the cochlea was developed which exhibits electrical response properties similar to those observed during electrical stimulation of the cochlea. The model results suggest that the spatial attenuation of current within the cochlea varies greatly in magnitude, depending on the stimulus configuration. In addition, the model suggests that the spatial attenuation of current in both the auditory nerve fiber endings in the organ of Corti and in the myelinated fibers within the cochlear ground paths is different from the voltage attenuation in the scalar fluids. Therefore the efficacy with which a particular stimulus configuration differentially excites local terminal auditory nerve fiber populations cannot be deduced from scalar voltage measurements which have previously been recorded in the literature. Consequently physiological experiments were performed in the cat to measure the current distributions in the terminal nerve fiber region for monopolar and bipolar stimulation of the scala tympani, and also for stimulation between the scala tympani and the scala vestibuli. The mean length constants measured in the basal turn for these stimuli were found to be 12, 3, and 7.5 mm, respectively.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources