Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jan 4;700(1):90-100.
doi: 10.1016/0167-4838(82)90296-5.

Metal ion-promoted binding of proteins to immobilized triazine dye affinity adsorbents

Metal ion-promoted binding of proteins to immobilized triazine dye affinity adsorbents

P Hughes et al. Biochim Biophys Acta. .

Abstract

Low concentrations of metal ions, particularly those of the first row transition series such as Zn2+, Co2+, Mn2+, Ni2+, Cu2+, and, to a lesser extent, the group IIA ions, Ca2+ and Mg2+, promotes binding of carboxypeptidase G2, alkaline phosphatase and yeast hexokinase to immobilized Procion Red H-8BN, Procion Yellow H-A and Cibacron Blue F3G-A respectively. The binding of ovalbumin to immobilized Cibacron Blue F3G-A and Procion Orange MX-G is selectively enhanced in the presence of AI3+. With ovalbumin and alkaline phosphatase, the effect is almost totally specific for both the metal ion and dye, whereas with carboxypeptidase G2 and hexokinase, metal ions such as Co2+, Ni2+, Mn2+, Cu2+, Ca2+ and Mg2+ also promote binding to varying degrees. Almost all other monovalent and trivalent metal ions appear to be ineffective. Metal ion-bound enzymes can subsequently be eluted with appropriate chelating agents of the amine, aminocarboxylate or substituted pyridine classes.

PubMed Disclaimer

Publication types

LinkOut - more resources