Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 May;63(5):1576-90.
doi: 10.1121/1.381852.

Acoustical properties of the human skull

Acoustical properties of the human skull

F J Fry et al. J Acoust Soc Am. 1978 May.

Abstract

The acoustical properties insertion loss, reflection loss, and sound speed were measured on a series of fresh and subsequently formalin immersed human skulls. Measurements were made in the frequency range from 0.25 to 6 MHz. Most studies were restricted to an upper frequency limit of 2.2 MHz. An axisymmetric focused beam configuration was used as the sound source for the measurements and the receivers were small disk-type (3-mm-diam) piezoelectric ceramics. The geometric and temporal character of the focused beam was studied as a consequence of passage through the skull sections. Some skulls were sectioned so that their individual layer components could be studied. A simple three-layer analytical model seems to explain the major aspects of insertion and reflection loss. The dominant feature in determining human adult skull losses is the middle layer (diploe) of cancellous bone. This study corroborates previous work on insertion loss as a function of frequency for composite skull. The study provides new quantitative information on the acoustic scattering properties of diploe, sound velocity, and dispersion in composite skull and its components, attenuation coefficients in skull components and sound-beam distortion and shifts after transmission through composite skull. We conclude that with selection of appropriate frequencies (0.5-1.0 MHz) and beam configuration it will be possible to perform clinically significant transkull diagnostic imaging and interrogation in the adult human brain.

PubMed Disclaimer

LinkOut - more resources