Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Apr;60(4):785-96.
doi: 10.1177/00220345810600040401.

Peroxidase antimicrobial system of human saliva: requirements for accumulation of hypothiocyanite

Peroxidase antimicrobial system of human saliva: requirements for accumulation of hypothiocyanite

E L Thomas et al. J Dent Res. 1981 Apr.

Abstract

Human saliva was fractionated to determine the components required for production and accumulation of the antimicrobial oxidizing agent, hypothiocyanite ion (OSCN-). The required components were: 1) peroxidase activity and thiocyanate ion (SCN-), 2) the saliva sediment, which produced hydrogen peroxide (H2O2) in the presence of oxygen and a divalent cation, and 3) heat-stable factors of the saliva supernatant. The supernatant factors were separated into high- and low-mol wt fractions. The high-mol wt fraction contained both peptide and carbohydrate, and its activity was partially inhibited by proteolytic treatment. The low-mol wt fraction contained carbohydrate and could be replaced by a number of mono- and di-saccharides. Glucosamine and N-acetyl glucosamine were the most effective, whereas neutral sugars such as sucrose were less effective. Sucrose competed with glucosamine, so that lower levels of OSCN- were obtained with increasing amounts of sucrose. The sugars stimulated production of H2O2 by the saliva sediment. Production of H2O2 was greater in the presence of glucosamine than of neutral sugars. Also, the ratio of OSCN- accumulation to H2O2 production was greater in the presence of glucosamine. The results suggest that peroxidase-mediated antimicrobial activity is modulated by the carbohydrate composition of whole saliva and by certain protein and glycoprotein components.

PubMed Disclaimer

Publication types

LinkOut - more resources