Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Oct 28;299(5886):838-40.
doi: 10.1038/299838a0.

Differential expression of steroid sulphatase locus on active and inactive human X chromosome

Differential expression of steroid sulphatase locus on active and inactive human X chromosome

B R Migeon et al. Nature. .

Abstract

The X chromosome in mammalian somatic cells is subject to unique regulation--usually genes on a single X chromosome are expressed while those on other X chromosomes are inactivated. The X-locus for steroid sulphatase (STS; EC 3.1.6.2), the microsomal enzyme that catalyses the hydrolysis of various 3 beta-hydroxysteroid sulphates, is exceptional because it seems to escape inactivation. Evidence for this comes from fibroblast clones in females heterozygous for mutations that result in a severe deficiency of this enzyme in affected males; all clones from these heterozygotes have STS activity, and enzyme-deficient clones that are expected if the locus were subject to inactivation, have not been found. Further evidence that the STS locus escapes inactivation is that the human inactive X chromosomes contributes STS activity to mouse-human hybrid cells. On the basis of these hybrid studies the STS locus has been mapped to the distal half of the short arm (p22-pter) of the human X chromosome. Although the STS locus on both X chromosomes in human female cells is expressed, quantitative measurements of STS activity in males and females do not accurately reflect the sex differences in number of X chromosomes (Table 1). The ratio of mean values for normal females to that of normal males is greater than 1:1 but less than the ratio of 2:1 expected if STS loci on all X chromosomes were equally expressed. The incomplete dosage effect suggests that the STS locus on the inactive X chromosome might not be fully expressed. To test this hypothesis, we examine two heterozygotes for X-linked STS deficiency who were also heterozygous for the common electrophoretic variants of glucose-6-phosphate dehydrogenase (G6PD A and B). Studies of fibroblast clones from these females provide evidence, presented here, for differential expression of STS loci on the active and inactive X chromosome.

PubMed Disclaimer

Publication types

LinkOut - more resources