Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Jan 10;283(5743):204-5.
doi: 10.1038/283204a0.

Oscillation of [Ca2+]i-linked K+ conductance in bullfrog sympathetic ganglion cell is sensitive to intracellular anions

Oscillation of [Ca2+]i-linked K+ conductance in bullfrog sympathetic ganglion cell is sensitive to intracellular anions

K Morita et al. Nature. .

Abstract

The intracellular free Ca2+ ([Ca2+]i) regulates the K+ conductance (GK) of the many types of cell membrane. The Ca2+ influx during an action potential activates this [Ca2+]i-linked GK in most neurones. In caffeine-treated sympathetic ganglion cells, however, Ca2+ released from an intracellular Ca2+ reservoir site analogous to the sarcoplasmic reticulum (SR) of the muscle (see ref. 12) causes activation of the GK, which results in slow oscillatory hyperpolarisations (caffeine hyperpolarisation, C-hyperpolarisation). Such a release of Ca2+ linked to the GK of the membrane seems important for understanding the role of the intracellular organelles in the control of membrane activities of a neurone. We report here the mechanism of the slow oscillatory hyperpolarisations recorded from the bullfrog sympathetic ganglion cell in Ringer solution. It is found that these hyperpolarisations are generated by a [Ca2+]i-linked GK system and are highly sensitive to anions in an intracellular recording electrode, probably to intracellular anions.

PubMed Disclaimer

Similar articles

Cited by