Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Sep;241(3):C160-6.
doi: 10.1152/ajpcell.1981.241.3.C160.

Fatigue and metabolism of frog muscle fibers during stimulation and in response to caffeine

Fatigue and metabolism of frog muscle fibers during stimulation and in response to caffeine

V Nassar-Gentina et al. Am J Physiol. 1981 Sep.

Abstract

Tension and metabolite concentrations were measured in single frog muscle fibers at 15 degrees C in vitro, in response to electrical stimulation or to immersion in caffeine- or potassium chloride-Ringer. Sarcomere length equaled 2.3 micrometers. Interrupted stimulation for 150 s at 20 Hz or stimulation for 7.5 min at 1 Hz was followed by at least 20 min of fatigue, evidenced by a reduced 200-ms test contraction. Fatigued fibers contracted maximally in potassium chloride- or caffeine-Ringer. They had high lactate and glucose 6-phosphate concentrations and a reduced phosphocreatine (PCr) concentration. Adenosine 5'-triphosphate (ATP) concentration was approximately normal but was markedly reduced by a caffeine contracture. A plot of PCr consumption against the tension-time integral at different stimulation frequencies (25, 35, or 50 Hz) and durations had an intercept of 25.5 nmol PCr/mg protein at time zero and a corrected slope of 0.65 nmol approximately P/mg protein per kg . s . cm-2. Prolonged fatigue is not due to energy exhaustion or to the inability of muscle fibers to consume residual ATP but probably arises from long-lasting interference in excitation-contraction coupling, which can be reversed by KCl- or caffeine-induced release of Ca2+ from intracellular stores.

PubMed Disclaimer

LinkOut - more resources