Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jul 25;257(14):8502-6.

Epidermal growth factor induces electrically silent Na+ influx in human fibroblasts

  • PMID: 6979542
Free article

Epidermal growth factor induces electrically silent Na+ influx in human fibroblasts

W H Moolenaar et al. J Biol Chem. .
Free article

Abstract

Addition of epidermal growth factor (EGF) to quiescent confluent cultures of human foreskin fibroblasts causes a rapid, nearly 2-fold stimulation of unidirectional Na+ influx and a doubling of the rate of the Na+,K+ pump, whereas K+ efflux remains unaltered. The diuretic amiloride, an inhibitor of Na+/H+ exchange, completely blocks EGF-induced Na+ influx, Na+,K+-pump activity, and DNA synthesis without affecting the cellular binding, visible clustering, and internalization of 125I-labeled and fluorescent EGF. In the absence of EGF, the induction of amiloride-sensitive Na+ influx and Na+,K+-pump activity can be mimicked by exposing the cells to weak acids. Neither the rapid stimulation of Na+ influx by EGF nor its inhibition by amiloride is accompanied by a detectable change in membrane potential (mean value of -66 mV), as evidenced by direct intracellular recording. In contrast, a rapid but transient membrane depolarization of about 50 mV, due to an unselective permeability increase, is observed in response to serum-growth factors. These results (i) indicate that EGF rapidly activates an electroneutral, previously inactive Na+ transport system in the plasma membrane of quiescent fibroblasts, and (ii) suggest that EGF-induced Na+ influx occurs in exchange for intracellular protons. The data further imply that early changes in membrane potential are not necessary for the initiation of a mitogenic response.

PubMed Disclaimer

Publication types

LinkOut - more resources