Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1980;11(1):1-12.
doi: 10.1002/neu.480110102.

Properties of a calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins

Comparative Study

Properties of a calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins

H C Pant et al. J Neurobiol. 1980.

Abstract

Axoplasm extruded from the giant axon of the squid contains Ca2+-activated proteases. The protease in the 100,000 x g of supernatant of axoplasm is very specific and degrades only the 200,000 MW, neurofilament protein (NF200), whereas the protease(s) in the pellet has a much wider range of substrate specificity. The activation of the supernatant protease is restricted to the Ca2+ ion, and no other divalent cation will substitute. The protease requires Ca2+ at a higher concentration than 0.5 mM for activation, and has a pH optimum of about 7.5. Degradation of the NF200 appears to proceed through a 100,000 MW and possibly a 47,000--50,000-MW intermediate form before degradation to TCA-soluble peptides. Activity of the protease is inhibited by divalent cation chelators, Cu2+ and Fe2+, sulphydryl inhibitors, and leupeptin. This specific Ca2+-activated protease in squid axoplasm has identical properties to Ca2+-activated proteases found in various non-neural tissues. Despite its narrow protein substrate specificity, Ca2+-activated protease purified from human platelets effectively degrades squid NF200, suggesting a possible structural relationship between platelet and muscle actin-binding proteins and neurofilament proteins.

PubMed Disclaimer

Publication types

LinkOut - more resources