Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Apr;48(4):670-6.
doi: 10.1152/jappl.1980.48.4.670.

Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves

Positive end-expiratory pressure shifts left ventricular diastolic pressure-area curves

J B Haynes et al. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr.

Abstract

Positive end-expiratory pressure (PEEP) ventilation is frequently associated with reduction in cardiac output despite unchanged transmural left ventricular (LV) end-diastolic pressure. These findings have been interpreted to indicate decreased contractility, but could also be explained by altered LV diastolic pressure-volume characteristics. To study this possibility, radiopaque markers were inserted into a plane of the LV in nine dogs. Transmural pressure (LV-pericardial) was synchronized with LV area during ventilation with zero end-expiratory pressure and with 15 cmH2O PEEP. Mean polynomial curves derived from the diastolic pressure-area data demonstrated that PEEP shifted the curves upward so that a given diastolic area was associated with a higher transmural LV pressure (P less than 0.0001). PEEP decreased end-diastolic area and stroke area, both of which were normalized with dextran volume expansion. Restoration of stroke area by normalizing end-diastolic area with volume expansion suggests the initial changes with PEEP were due to a decrease in preload rather than in contractility.

PubMed Disclaimer

Publication types