Vertebrate receptor optics and orientation
- PMID: 6995055
- DOI: 10.1007/BF00141466
Vertebrate receptor optics and orientation
Abstract
Vertebrate photoreceptors act as optical waveguides. They exhibit directionality, non-uniform distribution of energy within and immediately about the receptor, etc. Photolabile pigment absorption favors light traveling axially down the receptor. Clearly these properties influence response of the transducer. Retinal receptors, rods and cones, are aligned normally with a point approximating the center of the exit pupil of the eye. Taken together, these findings suggest that a prime role of receptor optics is to favor acceptance of the pertinent visual stimulus passing through the pupillary aperture and to inhibit stray light noise contained in the integrating sphere-like eyes. Many intriguing problems remain to be resolved. It is necessary to relate the properties of the receptor as a waveguide to determinations of directional sensitivity of the retina (Stiles-Crawford effects), and in particular, to understand mechanisms leading to fine receptor alignment. There must also be a pathology of receptor orientation--a science still in its infancy.
Similar articles
-
The relationship between retinal receptor orientation and photoreceptor optics.Int Ophthalmol Clin. 1978 Summer;18(2):41-80. Int Ophthalmol Clin. 1978. PMID: 681129
-
Visual consequences of the foveal pit.Invest Ophthalmol Vis Sci. 1980 Jun;19(6):653-67. Invest Ophthalmol Vis Sci. 1980. PMID: 7380624
-
Directional sensitivity of the retina: 75 years of Stiles-Crawford effect.Proc Biol Sci. 2008 Dec 22;275(1653):2777-86. doi: 10.1098/rspb.2008.0712. Proc Biol Sci. 2008. PMID: 18765346 Free PMC article. Review.
-
Dependence of the magnitude of the Stiles-Crawford effect on retinal location.J Physiol. 1967 Sep;192(2):309-15. doi: 10.1113/jphysiol.1967.sp008301. J Physiol. 1967. PMID: 6050150 Free PMC article.
-
Defective cone photoreceptor cytoskeleton, alignment, feedback, and energetics can lead to energy depletion in macular degeneration.Prog Retin Eye Res. 2004 Sep;23(5):495-522. doi: 10.1016/j.preteyeres.2004.04.005. Prog Retin Eye Res. 2004. PMID: 15302348 Review.
Cited by
-
Retinal pigment epithelial fine structure in the velvet cichlid (Astronotus ocellatus).Anat Embryol (Berl). 1992 Sep;186(4):371-7. doi: 10.1007/BF00185987. Anat Embryol (Berl). 1992. PMID: 1416086
-
Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis).Proc Biol Sci. 2014 Mar 19;281(1782):20133223. doi: 10.1098/rspb.2013.3223. Print 2014 May 7. Proc Biol Sci. 2014. PMID: 24648222 Free PMC article.
-
Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone.Prog Retin Eye Res. 2013 Jul;35:63-81. doi: 10.1016/j.preteyeres.2013.01.005. Epub 2013 Mar 15. Prog Retin Eye Res. 2013. PMID: 23500068 Free PMC article. Review.
-
How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.Bioessays. 2015 Nov;37(11):1243-52. doi: 10.1002/bies.201500081. Epub 2015 Sep 10. Bioessays. 2015. PMID: 26354340 Free PMC article.
-
Fine structure of the retinal pigment epithelium in the Port Jackson shark (Heterodontus phillipi).Anat Embryol (Berl). 1994 Nov;190(5):501-6. doi: 10.1007/BF00235498. Anat Embryol (Berl). 1994. PMID: 7887501