Heat resistance of the chemical resistance forms of Clostridium botulinum 62A spores over the water activity range 0 to 0.9
- PMID: 6999992
- PMCID: PMC291614
- DOI: 10.1128/aem.40.3.511-515.1980
Heat resistance of the chemical resistance forms of Clostridium botulinum 62A spores over the water activity range 0 to 0.9
Abstract
Having available the separate chemical resistance forms of Clostridium botulinum 62A spores from an investigation of the effect of spore form on wet heat resistance and also a method for measuring heat resistance at known water activities over the whole water activity (aw) range, we measured the heat resistance of these preparations at four different temperatures at each aw interval of 0.1 from aw 0 to aw 0.9. The required temperature dependence of resistance was calculated for each aw increment. The spore forms showed a low resistance at aw values of 0 and 0.7 of 0.9, with a rise in resistance in the range aw 0.1 to 0.5. The temperature dependence values behaved similarly.
Similar articles
-
Chemical manipulation of the heat resistance of Clostridium botulinum spores.Appl Environ Microbiol. 1976 Apr;31(4):492-8. doi: 10.1128/aem.31.4.492-498.1976. Appl Environ Microbiol. 1976. PMID: 5056 Free PMC article.
-
Effect of thermal treatments in oils on bacterial spore survival.J Appl Bacteriol. 1987 Jun;62(6):491-502. doi: 10.1111/j.1365-2672.1987.tb02681.x. J Appl Bacteriol. 1987. PMID: 3114210
-
Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance.Appl Environ Microbiol. 2016 Sep 16;82(19):6019-29. doi: 10.1128/AEM.01737-16. Print 2016 Oct 1. Appl Environ Microbiol. 2016. PMID: 27474721 Free PMC article. Review.
-
Effect of sporulation temperature on the resistance of Clostridium botulinum type A spores to thermal and high pressure processing.J Food Prot. 2015 Jan;78(1):146-50. doi: 10.4315/0362-028X.JFP-14-186. J Food Prot. 2015. PMID: 25581189
-
Heat resistance and recovery of spores of non-proteolytic Clostridium botulinum in relation to refrigerated, processed foods with an extended shelf-life.Soc Appl Bacteriol Symp Ser. 1994;23:115S-128S. doi: 10.1111/j.1365-2672.1994.tb04363.x. Soc Appl Bacteriol Symp Ser. 1994. PMID: 8047905 Review. No abstract available.
Cited by
-
Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores.Appl Environ Microbiol. 2001 Jan;67(1):317-22. doi: 10.1128/AEM.67.1.317-322.2001. Appl Environ Microbiol. 2001. PMID: 11133461 Free PMC article.
-
A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens-A Challenge for Thermal Validation Trials.Foods. 2022 Dec 19;11(24):4117. doi: 10.3390/foods11244117. Foods. 2022. PMID: 36553859 Free PMC article. Review.
-
Influence of environmental storage relative humidity on biological indicator resistance, viability, and moisture content.Appl Environ Microbiol. 1982 Mar;43(3):609-14. doi: 10.1128/aem.43.3.609-614.1982. Appl Environ Microbiol. 1982. PMID: 7073275 Free PMC article.
-
Spore heat resistance and specific mineralization.Appl Environ Microbiol. 1985 Dec;50(6):1414-21. doi: 10.1128/aem.50.6.1414-1421.1985. Appl Environ Microbiol. 1985. PMID: 3937495 Free PMC article.
-
Heat resistance of native and demineralized spores of Bacillus subtilis sporulated at different temperatures.Appl Environ Microbiol. 1999 Mar;65(3):1316-9. doi: 10.1128/AEM.65.3.1316-1319.1999. Appl Environ Microbiol. 1999. PMID: 10049900 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources