Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 May;240(5):E458-64.
doi: 10.1152/ajpendo.1981.240.5.E458.

Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes

Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes

H L Minuk et al. Am J Physiol. 1981 May.

Abstract

The metabolic response to exercise in obese postabsorptive noninsulin-dependent diabetics was compared to that of obese nondiabetics. Exercise consisted of 45 min on a cycle ergometer at 60% maximum oxygen consumption. Six diabetic subjects were studied during oral hypoglycemic therapy and four on diet alone. The sulfonylurea therapy had no effect on the response. Glycemia was elevated at rest in both diabetic subgroups (192 +/- 24 mg/dl for diet alone, 226 +/- 36 mg/dl for sulfonylurea treatment) and a similar fall (35 and 37 mg/dl, respectively) occurred with exercise. In control subjects, glycemia was 86 +/- 4 mg/dl and did not change with exercise. In the diabetics at rest, glucose production was elevated (220 +/- 25 mg/min), whereas the metabolic clearance of glucose was suppressed. During exercise the increase in glucose utilization was similar to that in controls, but glucose production failed to increase significantly, thus accounting for the decline in plasma glucose. At rest, plasma immunoreactive insulin (IRI) was elevated to 0.90 ng/ml in the controls and decreased to 0.65 ng/ml with exercise. In the diabetics IRI was similarly elevated (0.89 ng/ml) but failed to decrease normally with exercise. Lactate, pyruvate, alanine, and free fatty acids increased similarly in diabetics and controls, whereas the increase in 3-hydroxybutyrate during recovery was less in diabetics. The sustained insulinemia, the basal overproduction of glucose, and hyperglycemia itself may all contribute to the observed differences in glucose flux during exercise in noninsulin-dependent diabetics.

PubMed Disclaimer

Publication types

LinkOut - more resources