Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Nov;84(1):37-47.
doi: 10.1016/0027-5107(81)90048-8.

Mutagenesis induced by mono- and bi-functional alkylating agents in yeast mutants sensitive to photo-addition of furocoumarins (pso)

Mutagenesis induced by mono- and bi-functional alkylating agents in yeast mutants sensitive to photo-addition of furocoumarins (pso)

C Cassier et al. Mutat Res. 1981 Nov.

Abstract

The inactivation and the induction of forward and reverse mutations by a mono- and a bifunctional nitrogen mustard in 3 pso mutants of Saccharomyces cerevisiae, initially selected for their sensitivity to psoralen photo-addition, were compared with that of the wild-type. The pso1-1 mutant was very sensitive to both alkylating agents, and the mutagenicity was abolished. This correlates with the defect in the error-prone repair capacity for lesions induced by psoralen photo-addition and radiations already observed for this mutant. Therefore it appears that the PSO1+ gene product acts on a spectrum of DNA lesions. The pso2-1 mutant was highly sensitive to the lethal effect of the bifunctional nitrogen mustard and was only slightly sensitive to the monofunctional one. For both agents a reduction in induced mutagenesis was seen. The same was true for mono- and bifunctional psoralen derivatives. The pso2-1 mutant having the same sensitivity as the wild-type to UV and ionizing radiations, it is suggested that the PSO2+ gene product is predominantly necessary for the repair of cross-links irrespective of their molecular nature. In contrast with psoralen photo-induced inactivation the pso3-1 mutant had the same sensitivity as the wild-type to alkylating agents. However, a reduction in induced mutagenesis was seen in both cases. This response was modulated according to dose and type of mutation. Consequently, it appeared that the PSO3+ gene product acts specifically on psoralen photo-induced sub-lethal lesions and on a fraction of premutagenic lesions independently of their structure.

PubMed Disclaimer

Publication types

LinkOut - more resources