Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis
- PMID: 7054144
- PMCID: PMC216627
- DOI: 10.1128/jb.149.1.338-345.1982
Possible association of segregated lipid domains of Mycoplasma gallisepticum membranes with cell resistance to osmotic lysis
Abstract
Freeze-fracturing of cholesterol-rich Mycoplasma gallisepticum membranes from cells grown in a medium containing horse serum revealed particle-free patches. The patches appeared in cells quenched from either 4 or 37 degrees C. Particle-free patches also occurred in membranes of cells grown in a serum-free medium supplemented with egg-phosphatidylcholine but not in membranes of cells grown with dioleoylphosphatidylcholine. The appearance of particle-free patches was attributed to the presence of disaturated phosphatidylcholine (PC) molecules in M. gallisepticum membranes, which were synthesized by the insertion of a saturated fatty acid at position 2 of lysophosphatidylcholine derived from exogenous PC present in the growth medium. Consequences of the synthesis of the disaturated PC also included a decrease in osmotic fragility and the ability of the cells to be permeated by K+. Electron paramagnetic resonance and fluorescence polarization measurements revealed that the fluidity of the lipid domain in the protein-rich M. gallisepticum membranes was almost identical to that of an aqueous dispersion of M. gallisepticum membrane lipids. Furthermore, the electron paramagnetic resonance spectra of the membranes were single-component spectra showing no indication of immobilized regions. The possibility that the osmotic resistance of M. gallisepticum cells is associated with the particle-free patches rather than with a restricted membrane fluidity caused by membrane proteins is discussed.
Similar articles
-
Phase separation, ion permeability, and the isolation of membranes from osmotically stable mycoplasmas.Yale J Biol Med. 1983 Sep-Dec;56(5-6):405-11. Yale J Biol Med. 1983. PMID: 6089452 Free PMC article.
-
Analysis of membrane fractions from Mycoplasma gallisepticum.Biochim Biophys Acta. 1982 Jul 28;689(2):309-18. doi: 10.1016/0005-2736(82)90264-4. Biochim Biophys Acta. 1982. PMID: 7115712
-
Uptake and transbilayer distribution of phosphatidylcholines in Mycoplasma gallisepticum and their effect on cell morphology.Isr J Med Sci. 1984 Sep;20(9):812-6. Isr J Med Sci. 1984. PMID: 6511357
-
The structure and functions of the mycoplasma membrane.Int Rev Cytol. 1981;69:1-44. doi: 10.1016/s0074-7696(08)62319-0. Int Rev Cytol. 1981. PMID: 7012066 Review. No abstract available.
-
Adhesion of mycoplasmas to eukaryotic cells.Ciba Found Symp. 1981;80:98-118. doi: 10.1002/9780470720639.ch8. Ciba Found Symp. 1981. PMID: 6790254 Review.
Cited by
-
Volume regulation in Mycoplasma gallisepticum: evidence that Na+ is extruded via a primary Na+ pump.J Bacteriol. 1989 Aug;171(8):4417-24. doi: 10.1128/jb.171.8.4417-4424.1989. J Bacteriol. 1989. PMID: 2526806 Free PMC article.
-
Changes in membrane lipid composition of Mycoplasma capricolum affect the cell volume.J Bacteriol. 1986 Sep;167(3):1089-91. doi: 10.1128/jb.167.3.1089-1091.1986. J Bacteriol. 1986. PMID: 3745117 Free PMC article.
-
Role of Na+ cycle in cell volume regulation of Mycoplasma gallisepticum.J Bacteriol. 1989 Aug;171(8):4410-6. doi: 10.1128/jb.171.8.4410-4416.1989. J Bacteriol. 1989. PMID: 2753860 Free PMC article.
-
Liposomes replace serum for cultivation of fermenting mycoplasmas.Appl Environ Microbiol. 1983 Aug;46(2):370-4. doi: 10.1128/aem.46.2.370-374.1983. Appl Environ Microbiol. 1983. PMID: 6414370 Free PMC article.
-
Phase separation, ion permeability, and the isolation of membranes from osmotically stable mycoplasmas.Yale J Biol Med. 1983 Sep-Dec;56(5-6):405-11. Yale J Biol Med. 1983. PMID: 6089452 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources