Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Mar;56(3):332-8.
doi: 10.3171/jns.1982.56.3.0332.

Effects of experimental fluid-percussion injury of the brain on cerebrovascular reactivity of hypoxia and to hypercapnia

Effects of experimental fluid-percussion injury of the brain on cerebrovascular reactivity of hypoxia and to hypercapnia

W Lewelt et al. J Neurosurg. 1982 Mar.

Abstract

To test the hypothesis that concussive brain injury interferes with the normal vasodilator response of the cerebral circulation to hypoxemia, 30 cats were subjected to mild (PaO2 50 mm Hg) and severe (PaO2 30 mm Hg) hypoxemia while measurements were made of arterial and intracranial pressure, regional cerebral blood flow (CBF), and arterial blood gases. Ten cats served as controls, 10 were subjected to mild fluid-percussion injury of the brain (0.8 to 1.7 atmospheres (atm)), and 10 to severe injury (2.4 to 4.1 atm). The CBF response to hypercapnia (PaCO2 50 mm Hg) was also tested in most animals, and the response of CBF autoregulation to hemorrhagic hypotension was tested in four animals of each group. Trauma was found to severely attenuate the capacity of CBF to increase during hypoxemia. Responsiveness to hypoxemia appeared to be better preserved in traumatized animals than was autoregulation, but was less robust than the response to hypercapnia.

PubMed Disclaimer

Publication types

LinkOut - more resources