Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jan;71(1):77-84.
doi: 10.1002/jps.2600710120.

Theoretical and experimental studies of transport of micelle-solubilized solutes

Theoretical and experimental studies of transport of micelle-solubilized solutes

G E Amidon et al. J Pharm Sci. 1982 Jan.

Abstract

A physical model describing the simultaneous diffusion of free solute and micelle-solubilized solute across the aqueous boundary layer, coupled with partitioning and diffusion of free solute through a lipoidal membrane, is derived. In vitro experiments utilizing progesterone and polysorbate 80 showed excellent agreement between theoretical predictions based on independently determined parameters and experimental results. The physical model predicts that micelles can assist the transport of solubilized solute across the aqueous diffusion layer, resulting in a higher solute concentration at the membrane surface than would be predicted if micelle diffusion is neglected. At high surfactant concentrations, the aqueous diffusion layer resistance can be eliminated and the activity of the solute at the membrane can approach the bulk solute activity. This mechanism could explain observed enhanced absorption rates in vivo when both micelle solubilization occurs and the aqueous diffusion layer is an important transport barrier. The importance of determining and defining the thermodynamic activity of the diffusing solute is emphasized.

PubMed Disclaimer

LinkOut - more resources