Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jan;242(1):H89-93.
doi: 10.1152/ajpheart.1982.242.1.H89.

Effect of increased magnesium on recovery from ischemia in rat and rabbit hearts

Effect of increased magnesium on recovery from ischemia in rat and rabbit hearts

M M Bersohn et al. Am J Physiol. 1982 Jan.

Abstract

Perfusates containing high magnesium concentrations have been suggested to have a protective effect for ischemic myocardium, but the mechanism for such an effect is unclear. We investigated the recovery of isolated perfused rabbit and rat hearts from ischemia under varied conditions of increased Mg. Hearts were made ischemic in the presence of normal 1.2 mM Mg or elevated 15 mM Mg. Rabbit hearts, which show minimal alteration in contractility in the presence of 15 mM Mg, were not protected from ischemia by high Mg perfusate. Rat hearts, which have a large negative inotropic response to 15 mM Mg, exhibited significantly better recovery of mechanical function following ischemia in the presence of high Mg than following ischemia with normal Mg. This protective effect was abolished by increasing both Ca and Mg in the perfusate to prevent the decline in contractility that normally occurred with Mg. Reperfusion with 15 mM Mg after ischemia also had no protective effect if the rat heart had been made ischemic in the presence of normal Mg. We conclude that elevated Mg protects ischemic myocardium only under circumstances in which it has a negative inotropic effect before the onset of ischemia, i.e., in the rat heart perfused with normal Ca. These results suggest that the mechanism of protection by high Mg involves sparing of ATP. However, the different responses to Mg of the species studied in these experiments should be a caution against extrapolating such results from rat hearts to other species.

PubMed Disclaimer

Publication types

LinkOut - more resources