Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ
- PMID: 7060230
- DOI: 10.1161/01.res.50.3.342
Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ
Abstract
The extracellular epicardial potential fields produced by simple depolarization waves in the in situ canine left ventricular myocardium were analyzed. A mathematical model that included tissue anisotrophy was developed to explain the observed fields. Values of intracellular (i), extracellular (o), longitudinal (l), and transverse (t) resistivity which gave the best fit between the model and experimental data were (in ohm-cm, mean +/- SD): rol = 852 +/- 232, rot = 1247 +/- 210, ril = 291 +/- 38, rit = 1677 +/- 331. The potential fields around simple stimulated waves on the epicardium can best be explained if the extracellular wavefront voltage is (mean +/- SD) 74 +/- 7 mV for a wave propagating parallel to the local muscle fibers, and 43 +/- 6 mV for a wave propagating perpendicular to these fibers. We conclude that the anisotrophy of the electrical conductivity of cardiac muscle has important effects on he propagation of waves of depolarization and on the potential fields produced by depolarization in the intact heart.
Similar articles
-
Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog.Circ Res. 1979 May;44(5):701-12. doi: 10.1161/01.res.44.5.701. Circ Res. 1979. PMID: 428066
-
Anisotropic conduction properties of canine ventricular muscles. Influence of high extracellular K+ concentration and stimulation frequency.Jpn Circ J. 1985 May;49(5):487-98. doi: 10.1253/jcj.49.487. Jpn Circ J. 1985. PMID: 4021064
-
Extracellular field required for excitation in three-dimensional anisotropic canine myocardium.Circ Res. 1988 Jul;63(1):147-64. doi: 10.1161/01.res.63.1.147. Circ Res. 1988. PMID: 3383373
-
The nature of electrical propagation in cardiac muscle.Am J Physiol. 1983 Jan;244(1):H3-22. doi: 10.1152/ajpheart.1983.244.1.H3. Am J Physiol. 1983. PMID: 6336913 Review.
-
Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.Circ Res. 1996 Jul;79(1):115-27. doi: 10.1161/01.res.79.1.115. Circ Res. 1996. PMID: 8925559 Review.
Cited by
-
Roles of electric field and fiber structure in cardiac electric stimulation.Biophys J. 1999 Sep;77(3):1404-17. doi: 10.1016/S0006-3495(99)76989-4. Biophys J. 1999. PMID: 10465752 Free PMC article.
-
Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities.Biophys J. 1984 Mar;45(3):557-71. doi: 10.1016/S0006-3495(84)84193-4. Biophys J. 1984. PMID: 6713068 Free PMC article.
-
Anisotropic Cardiac Conduction.Arrhythm Electrophysiol Rev. 2020 Dec;9(4):202-210. doi: 10.15420/aer.2020.04. Arrhythm Electrophysiol Rev. 2020. PMID: 33437488 Free PMC article. Review.
-
Confocal Microscopy-Based Estimation of Parameters for Computational Modeling of Electrical Conduction in the Normal and Infarcted Heart.Front Physiol. 2018 Apr 4;9:239. doi: 10.3389/fphys.2018.00239. eCollection 2018. Front Physiol. 2018. PMID: 29670532 Free PMC article.
-
Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia.Med Biol Eng Comput. 2018 May;56(5):761-780. doi: 10.1007/s11517-017-1714-y. Epub 2017 Sep 20. Med Biol Eng Comput. 2018. PMID: 28933043 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources