Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Mar 29;696(3):315-22.
doi: 10.1016/0167-4781(82)90063-x.

Equilibrium and kinetic studies on the binding of des-N-tetramethyltriostin A to DNA

Equilibrium and kinetic studies on the binding of des-N-tetramethyltriostin A to DNA

K R Fox et al. Biochim Biophys Acta. .

Abstract

The interaction between TANDEM (a des-methyl analogue of triostin A) and poly(dA-dT) results in extension of the helix by 6.8 A for each ligand molecule bound, exactly as predicted for a bis-intercalation reaction. Cooperativity is evident in Scatchard plots for the interaction at ionic strengths of 0.2 and 1.0, where the binding constant is diminished compared to that which pertains at low salt concentrations. Binding to a natural DNA (calf thymus), already considerably weaker than binding to poly(dA-dT), is also sensitive to increased ionic strength. With a self-complementary octanucleotide d(G-G-T-A-T-A-C-C) the binding curve indicates the presence of a single des-N-tetramethyltriostin A binding site per helical fragment with a non-cooperative association constant about 6 . 10(6) M-1. Detergent-induced dissociation of des-N-tetramethyltriostin A-poly(dA-dT) complexes results in a simple exponential decay at all levels of binding, but the time constant of decay is dependent upon the initial binding ratio. This behavior cannot directly explain the cooperativity of equilibrium binding isotherms but suggests the occurrence of relatively long-lived perturbations of the helical structure by binding of the ligand. [Ala3, Ala7]des-N-tetramethyltriostin A, which has a more flexible octapeptide ring lacking the disulphide cross-bridge, dissociates from poly(dA-dT) much faster than des-N-tetramethyltriostin A. Dissociation of des-N-tetramethyltriostin A from calf thymus DNA is more rapid than dissociation of triostin A or other quinoxaline antibiotics, which may account for its low antimicrobial activity.

PubMed Disclaimer

Publication types

LinkOut - more resources