Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Apr;93(1):33-48.
doi: 10.1083/jcb.93.1.33.

Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis

Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis

A S Bajer. J Cell Biol. 1982 Apr.

Abstract

The oscillations of chromosomes associated with a single spindle pole in monocentric and bipolar spindles were analysed by time-lapse cinematography in mitosis of primary cultures of lung epithelium from the newt Taricha granulosa. Chromosomes oscillate toward and away from the pole in all stages of mitosis including anaphase. The duration, velocity, and amplitude of such oscillations are the same in all stages of mitosis. The movement away from the pole in monocentric spindle is rapid enough to suggest the existence of a previously unrecognized active component in chromosome movement, presumably resulting from a pushing action of the kinetochore fiber. During prometaphase oscillations, chromosomes may approach the pole even more closely than at the end of anaphase. Together, these observations demonstrate that a monopolar spindle is sufficient to generate the forces for chromosome transport, both toward and away from the pole. The coordination of the aster/centrosome migration in prophase with the development of the kinetochore fibers determines the course of mitosis. After the breaking of the nuclear envelope in normal mitosis, aster/centrosome separation is normally followed by the rapid formation of bipolar chromosomal fibers. There are two aberrant extremes that may result from a failure in coordination between these processes: (a) A monocentric spindle will arise when aster separation does not occur, and (b) an anaphaselike prometaphase will result if the aster/centrosomal complexes are already well-separated and bipolar chromosomal fibers do not form. In the latter case, the two monopolar prometaphase half-spindles migrate apart, each containing a random number of two chromatid (metaphase) monopolar-oriented chromosomes. This random segregation of prometaphase chromosome displays many features of a standard anaphase and may be followed by a false cleavage. The process of polar separation during prometaphase occurs without any visible interzonal structures. Aster/centrosomes and monopolar spindles migrate autonomously by an unknown mechanism. There are, however, firm but transitory connections between the aster center and the kinetochores as demonstrated by the occasional synchrony of centrosome-kinetochore movement. The data suggest that aster motility is important in the progress of both prometaphase and anaphase in normal mitosis.

PubMed Disclaimer

References

    1. Int Rev Cytol. 1979;60:53-92 - PubMed
    1. Science. 1954 Aug 6;120(3110):197-9 - PubMed
    1. Nature. 1978 Mar 30;272(5652):450-2 - PubMed
    1. Am J Hyg. 1963 Sep;78:173-80 - PubMed
    1. Cell Motil. 1981;1(2):237-45 - PubMed

Publication types