Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Sep 1;173(3):839-50.
doi: 10.1042/bj1730839.

The oxygenation of [3-methyl-3H]desacetoxycephalosporin C [7beta-(5-D-aminadipamido)-3-methylceph-3-em-4-carboxylic acid] to [3-hydroxymethyl-3H]desacetylcephalosporin C by 2-oxoglutarate-linked dioxygenases from Acremonium chrysogenum and Streptomyces clavuligerus

The oxygenation of [3-methyl-3H]desacetoxycephalosporin C [7beta-(5-D-aminadipamido)-3-methylceph-3-em-4-carboxylic acid] to [3-hydroxymethyl-3H]desacetylcephalosporin C by 2-oxoglutarate-linked dioxygenases from Acremonium chrysogenum and Streptomyces clavuligerus

M K Turner et al. Biochem J. .

Abstract

Cell-free extracts of Acremonium chrysogenum and Streptomyces clavuligerus oxidize the 3-methyl group of desacetoxycephalosporin C to a 3-hydroxymethyl group. The enzyme responsible for this reaction in these organisms was purified 20- and 30-fold respectively by chromatography on DEAE-cellulose. The enzymes, which were assayed with [3-methyl-3H]desacetoxycephalosporin C as substrate, have the properties expected of 2-oxoglutarate-linked dioxygenases. They require 2-oxoglutarate, Fe2+ cations and a mixture of reducing agents (dithiothreitol and ascorbate) for full activity. The enzyme from A. chrysogenum, but not that S. clavuligerus, is activated about 10-fold when it is preincubated with a reaction mixture from which either desacetoxycephalosporin C or 2-oxoglutarate is omitted. Fe2+ cations seem to play a key role in this activation. Both enzymes seem highly specific for cephalosporins with the natural 7beta-(5-D-aminoadipamido) side chain and are likely to be responsible for the oxidation of the 3-methylcephem nucleus in vivo.

PubMed Disclaimer

References

    1. Biochem J. 1960 Aug;76:357-61 - PubMed
    1. Biochem Soc Trans. 1977;5(4):1024-6 - PubMed
    1. Biochem J. 1976 Sep 1;157(3):651-60 - PubMed
    1. J Antibiot (Tokyo). 1977 Sep;30(9):775-7 - PubMed
    1. Biochem Soc Trans. 1977;5(4):1026-9 - PubMed