Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Aug 15;174(2):387-96.
doi: 10.1042/bj1740387.

Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat

Glutamine metabolism in the kidney during induction of, and recovery from, metabolic acidosis in the rat

D M Parry et al. Biochem J. .

Abstract

Experiments were carried out on rats to evaluate the possible regulatory roles of renal glutaminase activity, mitochondrial permeability to glutamine, phosphoenolpyruvate carboxykinase activity and systemic acid-base changes in the control of renal ammonia (NH(3) plus NH(4) (+)) production. Acidosis was induced by drinking NH(4)Cl solution ad libitum. A pronounced metabolic acidosis without respiratory compensation [pH=7.25; HCO(3) (-)=16.9mequiv./litre; pCO(2)=40.7mmHg (5.41kPa)] was evident for the first 2 days, but thereafter acid-base status returned towards normal. This improvement in acid-base status was accompanied by the attainment of maximal rates of ammonia excretion (onset phase) after about 2 days. A steady rate of ammonia excretion was then maintained (plateau phase) until the rats were supplied with tap water in place of the NH(4)Cl solution, whereupon pCO(2) and HCO(3) (-) became elevated [55.4mmHg (7.37kPa) and 35.5mequiv./litre] and renal ammonia excretion returned to control values within 1 day (recovery phase). Renal arteriovenous differences for glutamine always paralleled rates of ammonia excretion. Phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase activities and the rate of glutamine metabolism (NH(3) production and O(2) consumption) by isolated kidney mitochondria all increased during the onset phase. The increases in glutaminase and in mitochondrial metabolism continued into the plateau phase, whereas the increase in the carboxykinase reached a plateau at the same time as did ammonia excretion. During the recovery phase a rapid decrease in carboxykinase activity accompanied the decrease in ammonia excretion, whereas glutaminase and mitochondrial glutamine metabolism in vitro remained elevated. The metabolism of glutamine by kidney-cortex slices (ammonia, glutamate and glucose production) paralleled the metabolism of glutamine in vivo during recovery, i.e. it returned to control values. The results indicate that the adaptations in mitochondrial glutamine metabolism must be regulated by extra-mitochondrial factors, since glutamine metabolism in vivo and in slices returns to control values during recovery, whereas the mitochondrial metabolism of glutamine remains elevated.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem J. 1963 Jan;86:22-7 - PubMed
    1. Biochem Z. 1963;337:312-9 - PubMed
    1. J Clin Invest. 1963 Feb;42:263-76 - PubMed
    1. Clin Sci. 1961 Apr;20:263-78 - PubMed
    1. J Clin Invest. 1959 Feb;38(2):366-72 - PubMed