Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun 25;257(12):6702-8.

Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase

  • PMID: 7085596
Free article

Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase

R W Gross et al. J Biol Chem. .
Free article

Abstract

Metabolism of lysophosphatidylcholine (LPC), recently implicated in arrhythmogenesis, was characterized in rabbit ventricular homogenates. Activities of four enzymatic pathways were distinguishable after subcellular fractionation and DEAE-Sephacel chromatography including microsomal lysophospholipase, microsomal acyl coenzyme A/LPC acyltransferase, cytosolic lysophospholipase, and cytosolic lysophospholipase-transacylase. Microsomal lysophospholipase activity was attenuated 81% by acidosis comparable to that in ischemic myocardium (pH 6.5) and was inhibited by substrate. LPC acyltransferase was identified in the microsomal fraction based on CoA-dependent phosphatidyl choline synthesis, the positional specificity of acylation of LPC, and identical reaction velocities with both of its labeled co-substrates. LPC acyltransferase had a Vmax of 5.1 nmol/mg/min, a broad pH optimum centered at pH 7, and an apparent Km for LPC and palmitoyl-CoA of 14 microM and 7 microM. Cytosolic lysophospholipase was separated from lysophospholipase-transacylase by DEAE-Sephacel chromatography and distinguished from microsomal lysophospholipase by its broad pH activity curve, Michaelis-Menten kinetics (Vmax = 9.5 nmol/mg/min, Km = 7.5 microM), and lack of substrate inhibition. Lysophospholipase-transacylase was identified in the cytosolic fraction by CoA-independent phosphatidyl choline synthesis and purified 4885-fold from homogenate by ammonium sulfate precipitation, DEAE-Sephacel, hydroxylapatite, gel filtration, and polylysine chromatography. The partially purified enzyme had a transacylase/lysophospholipase activity ratio of 0.6, and transacylation of LPC was prominent at submicellar concentrations of substrate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources