Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Jun;221(3):731-4.

Cholestatic effect of harmol glucuronide in the rat. Prevention of harmol-induced cholestasis by increased formation of harmol sulfate

  • PMID: 7086685

Cholestatic effect of harmol glucuronide in the rat. Prevention of harmol-induced cholestasis by increased formation of harmol sulfate

K R Krijgsheld et al. J Pharmacol Exp Ther. 1982 Jun.

Abstract

Harmol, a phenolic compound of low molecular weight, is conjugated either with glucuronic acid or sulfate. A clear relationship is observed between the metabolism of harmol and the occurrence of cholestasis: high concentrations of harmol glucuronide in bile induced a complete stop of bile flow, both in the rat in vivo and in the perfused rat liver. Intravenous infusion of harmol (250 mumol/hr/kg b.wt.) in vivo in the rat considerably decreased the availability of sulfate and, consequently, the amount of harmol sulfate excreted in bile and urine; this decrease was compensated for by an increase in glucuronidation, which caused complete cholestasis when the concentration of harmol glucuronide in bile became of the order of 20 mM. A sufficient supply of sulfate by infusion of sodium sulfate prevented the decrease in sulfation and the increase in glucuronidation and no cholestasis occurred. Low sulfate availability in rats fed a low-protein diet decreased the time of harmol infusion required for cholestasis to occur. Alleviation of the cholestasis in low-protein diet-fed rats was observed when after 2 hr of infusion of harmol additional sulfate was supplied. In the single-pass perfused rat liver, cholestasis occurred when large amounts of harmol glucuronide were excreted in bile. When sulfation of harmol was inhibited by 2,6-dichloro-4-nitrophenol, cholestasis occurred at lower infusion rates of harmol. These data indicate that harmol glucuronide is cholestatic when its concentration in bile increases beyond a threshold concentration; the protein content of the diet may profoundly affect the occurrence of this toxic effect.

PubMed Disclaimer

Similar articles

Cited by

Publication types