Connections of the octopus optic lobe: an HRP study
- PMID: 7096632
- DOI: 10.1002/cne.902060403
Connections of the octopus optic lobe: an HRP study
Abstract
The major visual centers of the octopus central nervous system are the paired optic lobes. Bidirectional transport of horseradish peroxidase (HRP) was used to determine connections of the optic lobe. Cells afferent to the optic lobe were identified by retrograde HRP transport in the following lobes of the central ganglia: anterior basal, median basal, dorsal basal, interbasal, subvertical, precommissural, brachial, and magnocellular. Labeled cells were also observed within the contralateral optic lobe, various optic tract lobes bilaterally, and in photoreceptors of the ipsilateral retina. Additionally, individual fibers, in part originating from cells in the posterior subvertical lobe, were labeled within the central neuropil core of various vertical lobules. Differences in results between superficial and deep optic lobe medulla injections indicate that some afferent projections from central sources may terminate on cell populations at specific depths within the lobe. Efferent optic lobe fibers into the superior frontal and lateral basal lobes were labeled by anterograde transport. Other possible optic lobe efferent projections terminated in supraesophageal lobes and the magnocellular lobe. The many inputs to the optic lobe from higher motor and associative centers in the central ganglia emphasize that the medulla region of the optic lobe is an exceptionally complex integrative area.
Similar articles
-
The pretectal nucleus lentiformis mesencephali of Rana pipiens.J Comp Neurol. 1985 Apr 8;234(2):264-75. doi: 10.1002/cne.902340210. J Comp Neurol. 1985. PMID: 3872890
-
Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.J Comp Neurol. 1980 Sep 15;193(2):435-65. doi: 10.1002/cne.901930210. J Comp Neurol. 1980. PMID: 7440777
-
Evidence for visual mapping in the peduncle lobe of octopus.Neurosci Lett. 1981 Jun 12;24(1):7-11. doi: 10.1016/0304-3940(81)90350-5. Neurosci Lett. 1981. PMID: 6167919
-
Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi.J Comp Neurol. 1993 Feb 15;328(3):313-50. doi: 10.1002/cne.903280302. J Comp Neurol. 1993. PMID: 8440785 Review.
-
Building a projection map for photoreceptor neurons in the Drosophila optic lobes.Semin Cell Dev Biol. 2004 Feb;15(1):137-43. doi: 10.1016/j.semcdb.2003.09.007. Semin Cell Dev Biol. 2004. PMID: 15036216 Review.
Cited by
-
Sensory evoked potentials in unanesthetized unrestrained cuttlefish: a new preparation for brain physiology in cephalopods.J Comp Physiol A. 1991 Jan;168(1):141-50. doi: 10.1007/BF00217112. J Comp Physiol A. 1991. PMID: 2033566
-
Functional organization of visual responses in the octopus optic lobe.bioRxiv [Preprint]. 2023 Feb 16:2023.02.16.528734. doi: 10.1101/2023.02.16.528734. bioRxiv. 2023. Update in: Curr Biol. 2023 Jul 10;33(13):2784-2793.e3. doi: 10.1016/j.cub.2023.05.069. PMID: 36824726 Free PMC article. Updated. Preprint.
-
The neural basis of visual processing and behavior in cephalopods.Curr Biol. 2023 Oct 23;33(20):R1106-R1118. doi: 10.1016/j.cub.2023.08.093. Curr Biol. 2023. PMID: 37875093 Free PMC article. Review.
-
Diffusion MRI Connections in the Octopus Brain.Exp Neurobiol. 2022 Feb 28;31(1):17-28. doi: 10.5607/en21047. Exp Neurobiol. 2022. PMID: 35256541 Free PMC article.
-
Cell types and molecular architecture of the Octopus bimaculoides visual system.Curr Biol. 2022 Dec 5;32(23):5031-5044.e4. doi: 10.1016/j.cub.2022.10.015. Epub 2022 Oct 31. Curr Biol. 2022. PMID: 36318923 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources