Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1982 Jun:98:289-301.
doi: 10.1242/jeb.98.1.289.

Bone strength in small mammals and bipedal birds: do safety factors change with body size?

Comparative Study

Bone strength in small mammals and bipedal birds: do safety factors change with body size?

A A Biewener. J Exp Biol. 1982 Jun.

Abstract

Measurements of the cross-sectional geometry and length of bones from animals of different sizes suggest that peak locomotory stresses might be as much as nine times greater in the limb bones of a 300 kg horse than those of a 0.10 kg chipmunk. To determine if the bones of larger animals are stronger than those of small animals, the bending strength of whole bone specimens from the limbs of small mammals and bipedal birds was measured and compared with published data for large mammalian cortical bone (horses and bovids). No significant difference (P greater than 0.2) was found in the failure stress of bone over a range in size from 0.05-700 kg (233 +/- 53 MN/m2 for small animals compared to 200 +/- 28 MN/m2 for large animals). This finding suggests that either the limb bones of small animals are much stronger than they need to be, or that other aspects of locomotion (e.g. duty factor and limb orientation relative to the direction of the ground force) act to decrease peak locomotory stresses in larger animals.

PubMed Disclaimer

Publication types

LinkOut - more resources