Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Sep 9;299(5879):161-3.
doi: 10.1038/299161a0.

Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles

Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles

P S Aronson et al. Nature. .

Abstract

The intracellular pH in animal cells in generally maintained at a higher level than would be expected if H+ were passively distributed across the plasma membrane. In a wide variety of cells including sea urchin eggs, skeletal muscle, renal and intestinal epithelial cells, and neuroblastoma cells, plasma membrane Na+-H+ exchangers mediate the uphill extrusion of H+ coupled to, and thus energized by, the downhill entry of Na+. Plasma membrane vesicles isolated from the luminal (microvillus, brush border) surface of renal proximal tubular cells possess a Na+-H+ exchanger that seems to be representative of the Na+-H+ exchangers found in other tissues. For example, the renal microvillus membrane Na+-H+ exchanger, like other Na+-H+ exchangers, mediates electroneutral cation exchange, is sensitive to inhibition by the diuretic drug amiloride, and has affinity for Li+ in addition to Na+ and H+ (refs 5, 9). Here we have examined the effect of internal H+ on the activity of the Na+-H+ exchanger in renal microvillus membrane vesicles. Our results suggest that internal H+, independent of its role as a substrate for exchange with external independent of its role as a substrate for exchange with external independent of its role as a substrate for exchange with external Na+, has an important modifier role as an allosteric activator of the Na+-H+ exchanger. Allosteric behaviour with respect to internal H+ is a property that would enhance the ability of plasma membrane Na+-H+ exchangers to extrude intracellular acid loads and thereby contribute to the regulation of intracellular pH.

PubMed Disclaimer

Publication types

LinkOut - more resources