Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Oct;60(4):834-40.

Isolation of human platelet membrane microparticles from plasma and serum

  • PMID: 7115953
Free article

Isolation of human platelet membrane microparticles from plasma and serum

J N George et al. Blood. 1982 Oct.
Free article

Abstract

Methods have been developed to isolate human platelet membrane fragments from plasma and serum. Rabbit antibody produced against the human platelet membrane glycoprotein complex, IIb/IIIa, was utilized in an immunoelectrophoretic assay to evaluate the amount of this antigen in various microparticle preparations. The serum concentration of platelet microparticles was more than tenfold greater than that observed for plasma (65 micrograms/ml versus 4.4 micrograms/ml, respectively). Ultrastructural evaluation of either plasma or serum-derived microparticles disclosed a variety of membrane fragments and membrane-bound vesicles with occasional fragments of red blood cells, white blood cells, and platelets. In contrast, microparticle preparations derived from isolated washed platelets after thrombin stimulation contained a heterogeneous array of membrane fragments, vesicles, and granules but no identifiable red cell, white cell, or platelet fragments. Thus, these studies demonstrate that normal human plasma and serum contain platelet membrane fragments that are produced during cell activation. If a similar loss of platelet membranes occurs in vivo following reversible platelet activation, it is possible that the resulting membrane modifications may be of importance in both the structural and functional changes that develop during platelet senescence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources