Connections between the frontal eye field and pretectum in the monkey: an anterograde/retrograde study using HRP gel and TMB neurohistochemistry
- PMID: 7119150
- DOI: 10.1002/cne.902070410
Connections between the frontal eye field and pretectum in the monkey: an anterograde/retrograde study using HRP gel and TMB neurohistochemistry
Abstract
Horseradish peroxidase (HRP) gel implants in the frontal eye field (FEF) of macaque monkeys, processed with tetramethylbenzidine (TMB) neurohistochemistry and studied with darkfield microscopy, demonstrated bidirectional HRP labeling of the afferents and efferents of this cortical area. It was evident that among the entire scope of its inputs, the FEF received a prominent afferent projection from the nucleus of the optic tract (NOT, nucleus limitans) and the suprageniculate nucleus, and projected to a medial subdivision of NOT, sublentiform nucleus, nucleus of the pretectal area, nucleus of the posterior commissure, and the rostral periaqueductal gray. The direct afferent projections to FEF from NOT could provide a route for visual input to reach FEF via the pretectum without first going to the visual cortex. The efferents probably represent the pathway through which FEF influences pupillary dynamics known to accompany, or occur independently of, eye movements.
Similar articles
-
Cortical projections to the paramedian tegmental and basilar pons in the monkey.J Comp Neurol. 1984 Sep 20;228(3):388-408. doi: 10.1002/cne.902280307. J Comp Neurol. 1984. PMID: 6480918
-
Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). II. Ascending thalamo-telencephalic connections.J Comp Neurol. 1981 Mar 10;196(4):539-48. doi: 10.1002/cne.901960403. J Comp Neurol. 1981. PMID: 7204670
-
Macaque accessory optic system: II. Connections with the pretectum.J Comp Neurol. 1990 Dec 8;302(2):405-16. doi: 10.1002/cne.903020216. J Comp Neurol. 1990. PMID: 1705270
-
Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi.J Comp Neurol. 1993 Feb 15;328(3):313-50. doi: 10.1002/cne.903280302. J Comp Neurol. 1993. PMID: 8440785 Review.
-
Visual pathways.Annu Rev Neurosci. 1979;2:193-225. doi: 10.1146/annurev.ne.02.030179.001205. Annu Rev Neurosci. 1979. PMID: 120128 Review. No abstract available.
Cited by
-
Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation.PLoS Biol. 2022 May 26;20(5):e3001654. doi: 10.1371/journal.pbio.3001654. eCollection 2022 May. PLoS Biol. 2022. PMID: 35617290 Free PMC article.
-
Long-Term Value Memory in the Primate Posterior Thalamus for Fast Automatic Action.Curr Biol. 2020 Aug 3;30(15):2901-2911.e3. doi: 10.1016/j.cub.2020.05.047. Epub 2020 Jun 11. Curr Biol. 2020. PMID: 32531286 Free PMC article.
-
Time-on-task effects on human pupillary and saccadic metrics after theta burst transcranial magnetic stimulation over the frontal eye field.IBRO Neurosci Rep. 2023 Nov 8;15:364-375. doi: 10.1016/j.ibneur.2023.11.001. eCollection 2023 Dec. IBRO Neurosci Rep. 2023. PMID: 38046886 Free PMC article.
-
Selective Modulation of the Pupil Light Reflex by Microstimulation of Prefrontal Cortex.J Neurosci. 2017 May 10;37(19):5008-5018. doi: 10.1523/JNEUROSCI.2433-16.2017. Epub 2017 Apr 21. J Neurosci. 2017. PMID: 28432136 Free PMC article.
-
Both a Gauge and a Filter: Cognitive Modulations of Pupil Size.Front Neurol. 2019 Jan 22;9:1190. doi: 10.3389/fneur.2018.01190. eCollection 2018. Front Neurol. 2019. PMID: 30723454 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources