On the physico-chemical basis of voltage-dependent molecular gating mechanisms in biological membranes
- PMID: 712813
- DOI: 10.1007/BF01933475
On the physico-chemical basis of voltage-dependent molecular gating mechanisms in biological membranes
Abstract
The possible nature and theoretical treatment of electric field-induced molecular processes in a membrane are examined. Special attention is given to fairly fast switching phenomena as reflected by asymmetry currents as well as ionic gating in squid axon and similar systems. The apparent charge displacement associated with the underlying mechanisms is argued to be brought about by conformational transitions of integral macromolecular structures. Under these circumstances, voltage changes can actaully control the functional state of membranes by direct interference with conformational equilibria. A basic model is quantitatively discussed and shown to account for certain observed asymmetry currents. Effects due to temperature, pressure, or chemical interactions can be readily described. It is indicated how more complicated voltage-dependent membrane processes may be approached along these lines.
Similar articles
-
Quantitative analysis of activation and inactivation of asymmetry currents in biological membranes, based on a conformational transition model.J Membr Biol. 1978 Oct 19;43(2-3):149-67. doi: 10.1007/BF01933476. J Membr Biol. 1978. PMID: 712814
-
A calculation of the current voltage characteristic of a voltage-controlled model membrane ion channel.Proc R Soc Lond B Biol Sci. 1981 Dec 9;214(1194):125-36. doi: 10.1098/rspb.1981.0085. Proc R Soc Lond B Biol Sci. 1981. PMID: 6121328
-
The Croonian Lecture, 1983. Voltage-gated ion channels in the nerve membrane.Proc R Soc Lond B Biol Sci. 1983 Nov 22;220(1218):1-30. doi: 10.1098/rspb.1983.0086. Proc R Soc Lond B Biol Sci. 1983. PMID: 6140679 Review.
-
The relationship between the inactivating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon.Proc R Soc Lond B Biol Sci. 1982 Jun 22;215(1200):391-404. doi: 10.1098/rspb.1982.0049. Proc R Soc Lond B Biol Sci. 1982. PMID: 6127713
-
Ionic channels and gating currents in excitable membranes.Annu Rev Biophys Bioeng. 1977;6:7-31. doi: 10.1146/annurev.bb.06.060177.000255. Annu Rev Biophys Bioeng. 1977. PMID: 326155 Review. No abstract available.
Cited by
-
Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers.Eur Biophys J. 1987;14(3):147-53. doi: 10.1007/BF00253839. Eur Biophys J. 1987. PMID: 3830093
-
Voltage and temperature dependence of normal and chemically modified inactivation of sodium channels. Quantitative description by a cyclic three-state model.Pflugers Arch. 1989 Jul;414(3):273-81. doi: 10.1007/BF00584626. Pflugers Arch. 1989. PMID: 2550880
-
Sodium ionic and gating currents in mammalian cells.Eur Biophys J. 1990;18(1):25-32. doi: 10.1007/BF00185417. Eur Biophys J. 1990. PMID: 2155111
-
Quantitative analysis of activation and inactivation of asymmetry currents in biological membranes, based on a conformational transition model.J Membr Biol. 1978 Oct 19;43(2-3):149-67. doi: 10.1007/BF01933476. J Membr Biol. 1978. PMID: 712814
-
Three functions of sodium channels in the toad node of Ranvier are altered by trimethyloxonium ions.Pflugers Arch. 1985 Jan;403(1):13-20. doi: 10.1007/BF00583275. Pflugers Arch. 1985. PMID: 2580267