Structural characteristics of tetanolysin and its binding to lipid vesicles
- PMID: 7130132
- PMCID: PMC221544
- DOI: 10.1128/jb.152.2.888-892.1982
Structural characteristics of tetanolysin and its binding to lipid vesicles
Abstract
Tetanolysin binding to lipid vesicles was found to depend on the molar ratio of cholesterol to phospholipid, being low in vesicles containing up to 20 mol% cholesterol and high in vesicles containing more than 33 mol%. High concentrations of purified tetanolysin preparations formed arc- and ring-shaped structures. The structures were not readily detectable in diluted preparations unless incubated with lipid vesicles containing high molar ratios of cholesterol to phospholipid. It is suggested that the toxin is concentrated on the vesicles to local concentrations high enough to form the arcs and rings.
Similar articles
-
Cholesterol-dependent tetanolysin damage to liposomes.Biochim Biophys Acta. 1979 Feb 20;551(1):224-8. doi: 10.1016/0005-2736(79)90368-7. Biochim Biophys Acta. 1979. PMID: 427152
-
Dependence on phospholipid composition of the fraction of cholesterol undergoing spontaneous exchange between small unilamellar vesicles.Biochemistry. 1987 Aug 25;26(17):5460-5. doi: 10.1021/bi00391a037. Biochemistry. 1987. PMID: 3676264
-
Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation.Biophys J. 1989 Mar;55(3):393-405. doi: 10.1016/S0006-3495(89)82833-4. Biophys J. 1989. PMID: 2467697 Free PMC article.
-
Reassembly of human apoproteins A-I and A-II with unilamellar phosphatidylcholine-cholesterol liposomes. Association kinetics and characterization of the complexes.Biochim Biophys Acta. 1980 Oct 2;601(3):509-23. doi: 10.1016/0005-2736(80)90554-4. Biochim Biophys Acta. 1980. PMID: 6774752
-
Interaction of alpha-lactalbumin with dimyristoylphosphatidylcholine vesicles. III. Influence of the temperature and of the lipid-to-protein molar ratio on the complex formation.Biochim Biophys Acta. 1983 Mar 9;728(3):293-304. doi: 10.1016/0005-2736(83)90498-4. Biochim Biophys Acta. 1983. PMID: 6824658
Cited by
-
Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis.Pathogens. 2019 Dec 30;9(1):33. doi: 10.3390/pathogens9010033. Pathogens. 2019. PMID: 31905867 Free PMC article.
-
Protein arcs may form stable pores in lipid membranes.Biophys J. 2014 Jan 7;106(1):154-61. doi: 10.1016/j.bpj.2013.11.4490. Biophys J. 2014. PMID: 24411247 Free PMC article.
-
Mechanism of tetanolysin-induced membrane damage: studies with black lipid membranes.J Bacteriol. 1984 Jan;157(1):321-3. doi: 10.1128/jb.157.1.321-323.1984. J Bacteriol. 1984. PMID: 6317656 Free PMC article.
-
19F NMR studies provide insights into lipid membrane interactions of listeriolysin O, a pore forming toxin from Listeria monocytogenes.Sci Rep. 2018 May 2;8(1):6894. doi: 10.1038/s41598-018-24692-6. Sci Rep. 2018. PMID: 29720597 Free PMC article.
-
Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions.Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20226-31. doi: 10.1073/pnas.0708104105. Epub 2007 Dec 12. Proc Natl Acad Sci U S A. 2007. PMID: 18077338 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources