Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles
- PMID: 7137347
- DOI: 10.1152/ajprenal.1982.243.5.F456
Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles
Abstract
Brush border membrane vesicles were purified from rabbit renal cortex using a calcium-precipitation procedure, and the uptake of carboxylic acids was determined by a rapid-filtration method. L-Lactate, pyruvate (monocarboxylic acids), and succinate (dicarboxylic acid) demonstrated features of Na+ cotransport: enhanced initial rate (1 s) of uptake with an inward Na+ gradient compared with the Na+ -free control condition and transient accumulation of substrate within the vesicles. Kinetic parameters derived for L-lactate and succinate show that each substrate is transported via single pathway and that the two substrates exhibit marginal cross-inhibition. A range of monocarboxylic acids including pyruvate and ketone bodies appear to interact with the monocarboxylic acid carrier. The kinetics of Nat-dependent pyruvate uptake suggest at least two transport pathways-namely, that this monocarboxylate shares both the mono- and dicarboxylic acid carriers. We conclude that isolated rabbit renal microvillus membranes possess independent transport systems for mono- and polycarboxylic acids.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
