Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Dec;41(14):3065-72.

Polyamine biosynthesis and interconversion in rodent tissues

  • PMID: 7141002

Polyamine biosynthesis and interconversion in rodent tissues

A E Pegg et al. Fed Proc. 1982 Dec.

Abstract

Polyamine levels in rodent tissues are regulated by the activities of three enzymes: ornithine decarboxylase, S-adenosylmethionine decarboxylase, and spermidine/spermine N1-acetyltransferase. These enzymes are present in the cell in very small amounts, have very short half-lives, and are highly inducible. Ornithine decarboxylase was purified to homogeneity (about 10,000-fold) from androgen-treated mouse kidneys, which have enzyme levels several hundred times higher than those in other fully induced mammalian tissues. This decarboxylase could be specifically labeled either in vitro or in vivo by reaction with radioactive alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor. Such covalent binding of alpha-difluoromethylornithine was used to titrate the number of molecules of the enzyme and to estimate its purity. It was also used for autoradiographic localization of the enzyme within tissues and to follow the degradation of the protein in vivo. S-Adenosylmethionine decarboxylase has been purified from rat liver and psoas muscle, and significant differences between the enzyme forms present in these tissues were observed. The rate-limiting enzyme in the interconversion of the polyamines, spermidine/spermine N1-acetyltransferase was purified more than 100,000-fold from carbon tetrachloride-induced rat liver. This acetylase acts on both spermine and spermidine to form N1-acetyl derivatives, which are then oxidized by polyamine oxidase forming spermidine and putrescine, respectively.

PubMed Disclaimer

Publication types

LinkOut - more resources