Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose
- PMID: 7149043
- DOI: 10.1152/ajpheart.1982.243.6.H884
Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose
Abstract
The isolated arterially perfused rabbit interventricular septum was used to determine the feasibility of using the glucose analogue 18F-2-deoxy-2-fluoro-d-glucose (DG) with a tracer kinetic model to estimate the rate of exogenous glucose utilization. FDG was delivered to the septum by constant infusion, and tissue 18F radioactivity was measured as a function of time by external coincidence counting. The following four conditions were studied: flow rates of 0.5, 1.0, and 1.5 ml/min with a heart rate of 72 beats/min and flow at 1.5 ml/min with 96 beats/min. The rate constants for FDG forward and reverse transport between the vascular and extravascular compartments (k*1, k*2, respectively), phosphorylation of FDG (k*3), and dephosphorylation of FDG-6-phosphate (FDG-6-P) (k*4) were determined from the tissue curves using a tracer kinetic model. The lumped constant (LC) of the deoxyglucose model calculated using Fick-derived myocardial metabolic rates of glucose (MMRGlc), was 0.60 +/- 0.10 and was stable over the range of conditions studied. Average k*'s and LC were used to calculate MMRGlc's employing the model and were not significantly (P greater than 0.05) different from those determined by the Fick method. Tissue analyses using high-pressure liquid chromatography documented that tissue 18F radioactivity wa due to FDG and FDG-6-P, and their relative fractions agreed well with the values predicted from the tracer kinetic model. Only FDG was detected in the effluent. These studies also indicate the presence of a myocardial enzyme that can hydrolyze FDG-6-P to FDG. Thus our results support the use of the FDG method with positron-computed tomography for the in vivo determination of the myocardial rate of exogenous glucose utilization.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
