Global asymptotic stability of a periodic solution to an epidemic model
- PMID: 7153676
- DOI: 10.1007/BF00275691
Global asymptotic stability of a periodic solution to an epidemic model
Abstract
In this paper a periodic delay differential equation with spatial spread is investigated. This equation can be used to model the growth of malaria which is transmitted by a mosquito. Using monotone techniques, it is shown that the following bifurcation holds: either the disease dies out or the density of infectious people tends to a spatially homogeneous, time periodic and positive solution.
Similar articles
-
Global asymptotic stability for a vector disease model with spatial spread.J Math Biol. 1980 Apr;9(2):179-87. doi: 10.1007/BF00275920. J Math Biol. 1980. PMID: 7189205
-
On the population dynamics of the malaria vector.Bull Math Biol. 2006 Nov;68(8):2161-89. doi: 10.1007/s11538-006-9104-x. Epub 2006 Jun 20. Bull Math Biol. 2006. PMID: 17086493
-
Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission.Math Biosci. 2012 Nov;240(1):45-62. doi: 10.1016/j.mbs.2012.06.003. Epub 2012 Jun 23. Math Biosci. 2012. PMID: 22732318
-
[Evolutionary ecology and epidemiology of interactions between Anopheles mosquitoes and malaria].Schweiz Med Wochenschr. 1999 Aug 10;129(31-32):1106-10. Schweiz Med Wochenschr. 1999. PMID: 10476549 Review. German.
-
[A review of spatial epidemiology with malaria surveillance and control in China].Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2017 Jul 6;29(5):651-655. doi: 10.16250/j.32.1374.2017020. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2017. PMID: 29469372 Review. Chinese.