Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 Dec 15;31(24):3973-7.
doi: 10.1016/0006-2952(82)90643-8.

Effects of phenobarbital and 3-methylcholanthrene on the in vivo distribution, metabolism and covalent binding of 4-ipomeanol in the rat; implications for target organ toxicity

Effects of phenobarbital and 3-methylcholanthrene on the in vivo distribution, metabolism and covalent binding of 4-ipomeanol in the rat; implications for target organ toxicity

C N Statham et al. Biochem Pharmacol. .

Abstract

The effects of phenobarbital (PB) and 3-methylcholanthrene (MC) on the distribution, metabolism and covalent binding of 4-ipomeanol were examined in the rat. An analysis of tissue extracts by high-pressure liquid chromatography (HPLC) showed that both treatments markedly decreased the concentrations of unmetabolized 4-ipomeanol at all times examined. PB treatment increased the urinary excretion of nonbound 4-ipomeanol metabolites, while MC treatment did not alter their excretion. Analysis of urine by HPLC indicated that the increased concentration of urinary metabolites found in the phenobarbital-treated rats was attributable primarily to an increased excretion of ipomeanol-4-glucuronide. These data indicate that the decreased pulmonary covalent binding and lethality of 4-ipomeanol in the rat after MC and PB were caused by alterations in the tissue distribution of the parent compound. Pulmonary concentrations of unmetabolized 4-ipomeanol were decreased by MC through an increased metabolism of 4-ipomeanol in the liver, primarily to toxic products that bind covalently in that tissue and lead to hepatoxicity. PB produced a similar decrease in unmetabolized 4-ipomeanol concentrations in lung but by an enhanced in vivo metabolism and clearance of 4-ipomeanol, primarily through a "nontoxic" pathway, glucuronidation, and did not lead to hepatotoxicity.

PubMed Disclaimer

LinkOut - more resources