Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982;31(Suppl 1 Pt 2):71-81.
doi: 10.2337/diab.31.1.s71.

Kidney complications

Kidney complications

D M Brown et al. Diabetes. 1982.

Abstract

Diabetic glomerulosclerosis in man and in all spontaneous-onset and chemically induced diabetes in experimental models is characterized by diffuse increase in mesangial matrix and glomerular basement membrane thickening. The most prominent features of the biochemical changes in the glomerular basement membrane are increase in the collagen-like components, decreased sialic acid, and increased glucosylation. However, the heterogeneity of the various glycoprotein components of the glomerular basement membrane and related components of the mesangium make comparative biochemistry difficult. Increased glomerular blood flow with no apparent alterations in the glomerular filtration coefficient in diabetes may be attributed to altered vascular control mechanisms which may include both hormonal mediation as well as changes in end-organ responsiveness. Although proteinuria is a common manifestation of diabetic involvement of the glomerulus, there is little biochemical or physiologic evidence as to the specific causes of increased glomerular filtration apparatus permeability. Further information as to the pathogenesis of diabetic vascular disease of the kidney and the ability to reverse pathologic changes by correction of the metabolic milieu will require analysis of carefully selected animal models. Particular care in experimental design must include the ability to integrate pathology, physiology, and biochemistry in each model in order to relate the information to human renal diabetic complications.

PubMed Disclaimer

MeSH terms

LinkOut - more resources