Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Nov 21;521(1):387-96.
doi: 10.1016/0005-2787(78)90280-0.

Nuclear chromatin changes during post-natal myocardial development

Nuclear chromatin changes during post-natal myocardial development

C J Limas et al. Biochim Biophys Acta. .

Abstract

The proliferative capacity of rat myocardium declines rapidly during the first few weeks of post-natal life. In order to gain insight into the mechanisms involved in this decline, we studied the structure and function of nuclear chromatin from isolated rat myocardial cells during post-natal growth. Chromatin template activity decreased progressively (7.5 +/- 0.3 pmol [3H]UTP/microgram DNA per min at age 5 days compared to 2.2 +/- 0.1 pmol [3H]UTP/microgram DNA per min at age 6 months) and was associated with a decrease in the number of transcription initiation sites. This decline was accompanied by changes in chromatin structure as evidenced by: (a) decreased susceptibility to DNAase I digestion with advancing age, (b) decreased poly-L-lysine binding (60% decrease between day 5 and six months of age), (c) progressive decline in positive ellipticity of circular dichroism spectra between 250--300 nm, and (d) derivative melting profiles showing a decrease in DNA regions bound by non-histone proteins and concomitant increase in histone-bound regions. The protein composition of myocardial chromatin also changed during post-natal development, chiefly due to a progressive increase in the histone/DNA ratio. These results indicate substantial changes in the organization and functional capacity of myocardial chromatin during early post-natal growth. These changes accompany, and may contribute to, the restriction in the proliferative capacity of myocardial cells.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources